P?POTRF
计算对称正定矩阵或者Hermite正定矩阵的Cholesky分解。
即
或者
,
上三角矩阵,
下三角矩阵。
接口定义
C Interface:
void pspotrf_(const char *uplo, const int *n, float *a, const int *ia, const int *ja, const int *desca, int *info)
void pdpotrf_(const char *uplo, const int *n, double *a, const int *ia, const int *ja, const int *desca, int *info)
void pcpotrf_(const char *uplo, const int *n, float _Complex *a, const int *ia, const int *ja, const int *desca, int *info)
void pzpotrf_(const char *uplo, const int *n, double _Complex *a, const int *ia, const int *ja, const int *desca, int *info)
Fortran Interface:
PSPOTRF(uplo, n, a, ia, ja, desca, info)
PDPOTRF(uplo, n, a, ia, ja, desca, info)
PCPOTRF(uplo, n, a, ia, ja, desca, info)
PZPOTRF(uplo, n, a, ia, ja, desca, info)
参数
参数 |
类型 |
范围 |
说明 |
输入/输出 |
|---|---|---|---|---|
uplo |
字符 |
全局 |
U为上三角矩阵,L为下三角矩阵。 |
输入 |
n |
整型 |
全局 |
要操作的列数,比如子矩阵的列数。 |
输入 |
a |
|
本地 |
|
输入,输出 |
ia |
整型 |
全局 |
子矩阵在全局矩阵中的行索引。 |
输入 |
ja |
整型 |
全局 |
子矩阵在全局矩阵中的列索引。 |
输入 |
desca |
整型数组 |
本地,全局 |
分布式矩阵A的矩阵描述符。 |
输入 |
info |
整型 |
全局 |
执行结果:
|
输出 |
依赖
#include <kscalapack.h>
示例
int izero=0;
int ione=1;
int myrank_mpi, nprocs_mpi;
MPI_Init( &argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank_mpi);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs_mpi);
int n = 8; // (Global) Matrix size
int nprow = 2; // Number of row procs
int npcol = 2; // Number of column procs
int nb = 4; // (Global) Block size
char uplo='L'; // Matrix is lower triangular
char layout='R'; // Block cyclic, Row major processor mapping
printf("Usage: ./test matrix_size block_size nprocs_row nprocs_col\n");
if(argc > 1) {
n = atoi(argv[1]);
}
if(argc > 2) {
nb = atoi(argv[2]);
}
if(argc > 3) {
nprow = atoi(argv[3]);
}
if(argc > 4) {
npcol = atoi(argv[4]);
}
assert(nprow * npcol == nprocs_mpi);
// Initialize BLACS
int iam, nprocs;
int zero = 0;
int ictxt, myrow, mycol;
blacs_pinfo_(&iam, &nprocs) ; // BLACS rank and world size
blacs_get_(&zero, &zero, &ictxt ); // -> Create context
blacs_gridinit_(&ictxt, &layout, &nprow, &npcol ); // Context -> Initialize the grid
blacs_gridinfo_(&ictxt, &nprow, &npcol, &myrow, &mycol ); // Context -> Context grid info (# procs row/col, current procs row/col)
// Compute the size of the local matrices
int mpA = numroc_( &n, &nb, &myrow, &izero, &nprow ); // My proc -> row of local A
int nqA = numroc_( &n, &nb, &mycol, &izero, &npcol ); // My proc -> col of local A
//allocate and fill the matrices A and B
double *A;
A = (double *)calloc(mpA*nqA,sizeof(double)) ;
if (A==NULL){ printf("Error of memory allocation A on proc %dx%d\n",myrow,mycol); exit(0); }
int k = 0;
for (int j = 0; j < nqA; j++) { // local col
int l_j = j / nb; // which block
int x_j = j % nb; // where within that block
int J = (l_j * npcol + mycol) * nb + x_j; // global col
for (int i = 0; i < mpA; i++) { // local row
int l_i = i / nb; // which block
int x_i = i % nb; // where within that block
int I = (l_i * nprow + myrow) * nb + x_i; // global row
assert(I < n);
assert(J < n);
if(I == J) {
A[k] = nb * nb;
} else {
A[k] = I + J;
}
//printf("%d %d -> %d %d -> %f\n", i, j, I, J, A[k]);
k++;
}
}
//creat descriptor
int descA[9];
int info=0;
int lddA = mpA > 1 ? mpA : 1;
descinit_( descA, &n, &n, &nb, &nb, &izero, &izero, &ictxt, &lddA, &info);
if(info != 0) {
printf("Error in descinit, info = %d\n", info);
}
//run pdpotrf_ and time
double MPIt1 = MPI_Wtime();
printf("[%dx%d] Starting \n", myrow, mycol);
pdpotrf_(&uplo, &n, A, &ione, &ione, descA, &info);
if (info != 0) {
printf("Error in caculate, info = %d\n", info);
}
double MPIt2 = MPI_Wtime();
//exit and finanlize
blacs_gridexit_(&ictxt);
MPI_Finalize();
return 0;
/*
* Origin A:
*
*16 1 2 3 4 5 6 7
*1 16 3 4 5 6 7 8
*2 3 16 5 6 7 8 9
*3 4 5 16 7 8 9 10
*4 5 6 7 16 9 10 11
*5 6 7 8 9 16 11 12
*6 7 8 9 10 11 16 13
*7 8 9 10 11 12 13 16
*/
/*After PDPOTRF:
*4.00000 1.00000 2.00000 3.00000 4.00000 5.00000 6.00000 7.00000
*0.250000 3.99218 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000
*0.500000 0.720158 3.90274 5.00000 6.00000 7.00000 8.00000 9.00000
*0.750000 0.954992 1.00884 3.67529 7.00000 8.00000 9.00000 10.0000
*1.00000 1.18983 1.18971 1.06481 3.32191 9.00000 10.0000 11.0000
*1.25000 1.42466 1.37058 1.17522 0.955149 2.86983 11.0000 12.0000
*1.50000 1.65949 1.55145 1.28562 0.996646 0.756689 2.31741 13.0000
*1.75000 1.89433 1.73232 1.39603 1.03814 0.734271 0.500013 1.59132
*/