鲲鹏社区首页
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助

修改配置

修改hadoop.conf

  1. 打开配置文件。
    vi conf/hadoop.conf.template hadoop.conf
  2. “i”进入编辑模式,根据实际情况对如下内容进行修改。
    # Hadoop home
        hibench.hadoop.home     /usr/hdp/current/hadoop-client
    # The root HDFS path to store HiBench data
        hibench.hdfs.master       hdfs://hadoop102:8020
     # Hadoop release provider. Supported value: apache, cdh5, hdp
         hibench.hadoop.release    hdp 
  3. “Esc”键,输入:wq!,按“Enter”保存并退出编辑。

修改spark.conf

  1. 打开配置文件。
    cp spark.conf.template spark.conf
    vi spark.conf
  2. “i”进入编辑模式,根据实际情况对如下内容进行修改。
    # Spark home
    hibench.spark.home      /usr/hdp/current/spark2-client
    
    # executor number and cores when running on Yarn
    hibench.yarn.executor.num     20
    hibench.yarn.executor.cores   19
    
    # executor and driver memory in standalone & YARN mode
    spark.executor.memory  44g
    spark.driver.memory    36g
  3. “Esc”键,输入:wq!,按“Enter”保存并退出编辑。

修改hibench.conf

  1. 打开配置文件。
    1
    vi hibench.conf
    
  2. “i”进入编辑模式,根据实际情况对如下内容进行修改。
    # The definition of these profiles can be found in the workload's conf file i.e. conf/workloads/micro/wordcount.conf
    hibench.scale.profile                small #此处的small对应HiBench-HiBench-7.0/conf/workloads/micro/wordcount.conf里面设置的值
    # Mapper number in hadoop, partition number in Spark
    hibench.default.map.parallelism         8
    
    # Reducer nubmer in hadoop, shuffle partition number in Spark
    hibench.default.shuffle.parallelism     8
    
    #进入HiBench-HiBench-7.0/conf/workloads/micro/wordcount.conf修改对应级别的数据量
  3. “Esc”键,输入:wq!,按“Enter”保存并退出编辑。

查看wordcount.conf目录

1
cat workloads/micro/wordcount.conf
#datagen
hibench.wordcount.tiny.datasize                 32000
hibench.wordcount.small.datasize                320000000
hibench.wordcount.large.datasize                3200000000
hibench.wordcount.huge.datasize                 32000000000
hibench.wordcount.gigantic.datasize             320000000000
hibench.wordcount.bigdata.datasize              1600000000000