中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助

漏洞修补列表

表1 已修补的开源及第三方软件漏洞列表

软件名称

软件版本

CVE编号

实际CVSS得分

漏洞描述

解决版本

openEuler:openssl

1.1.1m-15.oe2203sp1

CVE-2023-3446

5.3

Issue summary: Checking excessively long DH keys or parameters may be very slow.

Impact summary: Applications that use the functions DH_check(), DH_check_ex()

or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long

delays. Where the key or parameters that are being checked have been obtained

from an untrusted source this may lead to a Denial of Service.

The function DH_check() performs various checks on DH parameters. One of those

checks confirms that the modulus ('p' parameter) is not too large. Trying to use

a very large modulus is slow and OpenSSL will not normally use a modulus which

is over 10,000 bits in length.

However the DH_check() function checks numerous aspects of the key or parameters

that have been supplied. Some of those checks use the supplied modulus value

even if it has already been found to be too large.

An application that calls DH_check() and supplies a key or parameters obtained

from an untrusted source could be vulernable to a Denial of Service attack.

The function DH_check() is itself called by a number of other OpenSSL functions.

An application calling any of those other functions may similarly be affected.

The other functions affected by this are DH_check_ex() and

EVP_PKEY_param_check().

Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications

when using the '-check' option.

The OpenSSL SSL/TLS implementation is not affected by this issue.

The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.

Kunpeng BoostKit 24.0.RC1

openEuler:openssl

1.1.1m-15.oe2203sp1

CVE-2023-3817

5.3

Issue summary: Checking excessively long DH keys or parameters may be very slow.

Impact summary: Applications that use the functions DH_check(), DH_check_ex()

or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long

delays. Where the key or parameters that are being checked have been obtained

from an untrusted source this may lead to a Denial of Service.

The function DH_check() performs various checks on DH parameters. After fixing

CVE-2023-3446 it was discovered that a large q parameter value can also trigger

an overly long computation during some of these checks. A correct q value,

if present, cannot be larger than the modulus p parameter, thus it is

unnecessary to perform these checks if q is larger than p.

An application that calls DH_check() and supplies a key or parameters obtained

from an untrusted source could be vulnerable to a Denial of Service attack.

The function DH_check() is itself called by a number of other OpenSSL functions.

An application calling any of those other functions may similarly be affected.

The other functions affected by this are DH_check_ex() and

EVP_PKEY_param_check().

Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications

when using the "-check" option.

The OpenSSL SSL/TLS implementation is not affected by this issue.

The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.

Kunpeng BoostKit 24.0.RC1

cJSON

1.7.16

CVE-2023-50472

7.5

cJSON v1.7.16 was discovered to contain a segmentation violation via the function cJSON_SetValuestring at cJSON.c.

Kunpeng BoostKit 24.0.RC1

openEuler:openssl

1.1.1m-15.oe2203sp1

CVE-2023-4807

7.8

Issue summary: The POLY1305 MAC (message authentication code) implementation

contains a bug that might corrupt the internal state of applications on the

Windows 64 platform when running on newer X86_64 processors supporting the

AVX512-IFMA instructions.

Impact summary: If in an application that uses the OpenSSL library an attacker

can influence whether the POLY1305 MAC algorithm is used, the application

state might be corrupted with various application dependent consequences.

The POLY1305 MAC (message authentication code) implementation in OpenSSL does

not save the contents of non-volatile XMM registers on Windows 64 platform

when calculating the MAC of data larger than 64 bytes. Before returning to

the caller all the XMM registers are set to zero rather than restoring their

previous content. The vulnerable code is used only on newer x86_64 processors

supporting the AVX512-IFMA instructions.

The consequences of this kind of internal application state corruption can

be various - from no consequences, if the calling application does not

depend on the contents of non-volatile XMM registers at all, to the worst

consequences, where the attacker could get complete control of the application

process. However given the contents of the registers are just zeroized so

the attacker cannot put arbitrary values inside, the most likely consequence,

if any, would be an incorrect result of some application dependent

calculations or a crash leading to a denial of service.

The POLY1305 MAC algorithm is most frequently used as part of the

CHACHA20-POLY1305 AEAD (authenticated encryption with associated data)

algorithm. The most common usage of this AEAD cipher is with TLS protocol

versions 1.2 and 1.3 and a malicious client can influence whether this AEAD

cipher is used by the server. This implies that server applications using

OpenSSL can be potentially impacted. However we are currently not aware of

any concrete application that would be affected by this issue therefore we

consider this a Low severity security issue.

As a workaround the AVX512-IFMA instructions support can be disabled at

runtime by setting the environment variable OPENSSL_ia32cap:

OPENSSL_ia32cap=:~0x200000

The FIPS provider is not affected by this issue.

Kunpeng BoostKit 24.0.RC1

openEuler:openssl

1.1.1m-15.oe2203sp1

CVE-2024-0727

5.5

Issue summary: Processing a maliciously formatted PKCS12 file may lead OpenSSL

to crash leading to a potential Denial of Service attack

Impact summary: Applications loading files in the PKCS12 format from untrusted

sources might terminate abruptly.

A file in PKCS12 format can contain certificates and keys and may come from an

untrusted source. The PKCS12 specification allows certain fields to be NULL, but

OpenSSL does not correctly check for this case. This can lead to a NULL pointer

dereference that results in OpenSSL crashing. If an application processes PKCS12

files from an untrusted source using the OpenSSL APIs then that application will

be vulnerable to this issue.

OpenSSL APIs that are vulnerable to this are: PKCS12_parse(),

PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes()

and PKCS12_newpass().

We have also fixed a similar issue in SMIME_write_PKCS7(). However since this

function is related to writing data we do not consider it security significant.

The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue.

Kunpeng BoostKit 24.0.RC1

openEuler:zlib

1.2.11-22.oe2203sp1

CVE-2023-45853

9.8

MiniZip in zlib through 1.3 has an integer overflow and resultant heap-based buffer overflow in zipOpenNewFileInZip4_64 via a long filename, comment, or extra field. NOTE: MiniZip is not a supported part of the zlib product. NOTE: pyminizip through 0.2.6 is also vulnerable because it bundles an affected zlib version, and exposes the applicable MiniZip code through its compress API.

Kunpeng BoostKit 24.0.RC1

openEuler:openssl

1.1.1m-15.oe2203sp1

CVE-2023-2650

6.5

Issue summary: Processing some specially crafted ASN.1 object identifiers or

data containing them may be very slow.

Impact summary: Applications that use OBJ_obj2txt() directly, or use any of

the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message

size limit may experience notable to very long delays when processing those

messages, which may lead to a Denial of Service.

An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers -

most of which have no size limit. OBJ_obj2txt() may be used to translate

an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL

type ASN1_OBJECT) to its canonical numeric text form, which are the

sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by

periods.

When one of the sub-identifiers in the OBJECT IDENTIFIER is very large

(these are sizes that are seen as absurdly large, taking up tens or hundreds

of KiBs), the translation to a decimal number in text may take a very long

time. The time complexity is O(n^2) with 'n' being the size of the

sub-identifiers in bytes (*).

With OpenSSL 3.0, support to fetch cryptographic algorithms using names /

identifiers in string form was introduced. This includes using OBJECT

IDENTIFIERs in canonical numeric text form as identifiers for fetching

algorithms.

Such OBJECT IDENTIFIERs may be received through the ASN.1 structure

AlgorithmIdentifier, which is commonly used in multiple protocols to specify

what cryptographic algorithm should be used to sign or verify, encrypt or

decrypt, or digest passed data.

Applications that call OBJ_obj2txt() directly with untrusted data are

affected, with any version of OpenSSL. If the use is for the mere purpose

of display, the severity is considered low.

In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME,

CMS, CMP/CRMF or TS. It also impacts anything that processes X.509

certificates, including simple things like verifying its signature.

The impact on TLS is relatively low, because all versions of OpenSSL have a

100KiB limit on the peer's certificate chain. Additionally, this only

impacts clients, or servers that have explicitly enabled client

authentication.

In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects,

such as X.509 certificates. This is assumed to not happen in such a way

that it would cause a Denial of Service, so these versions are considered

not affected by this issue in such a way that it would be cause for concern,

and the severity is therefore considered low.

Kunpeng BoostKit 24.0.RC1

openEuler:openssl

1.1.1m-15.oe2203sp1

CVE-2023-5678

5.3

Issue summary: Generating excessively long X9.42 DH keys or checking

excessively long X9.42 DH keys or parameters may be very slow.

Impact summary: Applications that use the functions DH_generate_key() to

generate an X9.42 DH key may experience long delays. Likewise, applications

that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()

to check an X9.42 DH key or X9.42 DH parameters may experience long delays.

Where the key or parameters that are being checked have been obtained from

an untrusted source this may lead to a Denial of Service.

While DH_check() performs all the necessary checks (as of CVE-2023-3817),

DH_check_pub_key() doesn't make any of these checks, and is therefore

vulnerable for excessively large P and Q parameters.

Likewise, while DH_generate_key() performs a check for an excessively large

P, it doesn't check for an excessively large Q.

An application that calls DH_generate_key() or DH_check_pub_key() and

supplies a key or parameters obtained from an untrusted source could be

vulnerable to a Denial of Service attack.

DH_generate_key() and DH_check_pub_key() are also called by a number of

other OpenSSL functions. An application calling any of those other

functions may similarly be affected. The other functions affected by this

are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().

Also vulnerable are the OpenSSL pkey command line application when using the

"-pubcheck" option, as well as the OpenSSL genpkey command line application.

The OpenSSL SSL/TLS implementation is not affected by this issue.

The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.

Kunpeng BoostKit 24.0.RC1

cJSON

1.7.16

CVE-2023-50471

7.5

cJSON v1.7.16 was discovered to contain a segmentation violation via the function cJSON_InsertItemInArray at cJSON.c.

Kunpeng BoostKit 24.0.RC1