kml_fft(f/h)_plan_guru64_split_dft
建立多组数据序列n维C2C变换的plan。其中,单个FFT的数据序列不需要是连续的,可以以跨步的形式提供。split类接口的输入和输出分别存储在实部和虚部数组中。与kml_fft(f)_plan_guru_split_dft不同的是,kml_fft(f)_plan_guru64_split_dft允许部分参数是64位的整型。
接口定义
C interface:
kml_fft_plan kml_fft_plan_guru64_split_dft(int rank, const kml_fft_iodim64 *dims, int howmany_rank, const kml_fft_iodim64 *howmany_dims, double *ri, double *ii, double *ro, double *io, unsigned flags);
kml_fftf_plan kml_fftf_plan_guru64_split_dft(int rank, const kml_fftf_iodim64 *dims, int howmany_rank, const kml_fftf_iodim64 *howmany_dims, float *ri, float *ii, float *ro, float *io, unsigned flags);
kml_ffth_plan kml_ffth_plan_guru64_split_dft(int rank, const kml_ffth_iodim64 *dims, int howmany_rank, const kml_ffth_iodim64 *howmany_dims, __fp16 *ri, __fp16 *ii, __fp16 *ro, __fp16 *io, unsigned flags);
Fortran interface:
RES = KML_FFT_PLAN_GURU64_SPLIT_DFT(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, RI, II, RO, IO, FLAGS);
RES = KML_FFTF_PLAN_GURU64_SPLIT_DFT(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, RI, II, RO, IO, FLAGS);
RES = KML_FFTH_PLAN_GURU64_SPLIT_DFT(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, RI, II, RO, IO, FLAGS);
返回值
函数返回一个kml_fft(f/h)_plan类型的结构体指针。将该对象作为参数传入kml_fft(f/h)_execute函数中使用,将对当前提供的输入ri,ii和输出ro,io执行FFT变换;另外,也可以通过将该对象作为参数传入kml_fft(f/h)_execute_split_dft函数中以对新的输入ri,ii和输出ro,io执行FFT变换。
如果函数返回非空指针,则表示plan执行成功,否则表示执行失败。
参数
参数名 |
数据类型 |
描述 |
输入/输出 |
|---|---|---|---|
rank |
int |
单个FFT序列的维度。 约束:1≤rank≤3 |
输入 |
dims |
|
dims是大小为rank的结构体数组,dims[i]包含以下成员:
约束:dims[i].n≥1, for i in 0 to rank - 1 |
输入 |
howmany_rank |
int |
多个rank维FFT之间的内存排布用howmany_rank维的howmany_dims数组来描述,howmany_rank表示每个要计算的rank维FFT变换的起始地址的内存访问模式所需的维数。 约束:0≤howmany_rank≤3 |
输入 |
howmany_dims |
|
howmany_dims是大小为howmany_rank的结构体数组,howmany_dims[i]包含以下成员:
|
输入 |
ri |
|
输入待变换数据的实部。 |
输入 |
ii |
|
输入待变换数据的虚部。 |
输入 |
ro |
|
输出待变换数据的实部。 |
输出 |
io |
|
输出待变换数据的虚部。 |
输出 |
flags |
unsigned int |
planning选项,描述ESTIMATE模式或PATIENT模式。 KML_FFT_ESTIMATE:ESTIMATE模式 KML_FFT_PATIENT:PATIENT模式 |
输入 |
依赖
C: "kfft.h"
示例
C interface:
int rank = 2;
kml_fft_iodim64 *dims;
dims = (kml_fft_iodim64*)kml_fft_malloc(sizeof(kml_fft_iodim64) * rank);
dims[0].n = 2;
dims[0].is = 3;
dims[0].os = 3;
dims[1].n = 3;
dims[1].is = 1;
dims[1].os = 1;
int howmany_rank = 1;
kml_fft_iodim64 *howmany_dims;
howmany_dims = (kml_fft_iodim64*)kml_fft_malloc(sizeof(kml_fft_iodim64) * howmany_rank);
howmany_dims[0].n = 2;
howmany_dims[0].is = 2 * 3;
howmany_dims[0].os = 2 * 3;
double init[12][2] = {{120, 0}, {8, 8}, {0, 0}, {0, 16}, {0, 16}, {-8, 8}, {-8, 0}, {-8, 8}, {-16, 0}, {0, -16}, {-40, 8}, {-8, -8}};
double *ri;
ri = (double*)kml_fft_malloc(sizeof(double) * 12);
double *ii;
ii = (double*)kml_fft_malloc(sizeof(double) * 12);
for (int i = 0; i < 12; i++) {
ri[i] = init[i][0];
ii[i] = init[i][1];
}
double *ro;
ro = (double*)kml_fft_malloc(sizeof(double) * 12);
double *io;
io = (double*)kml_fft_malloc(sizeof(double) * 12);
kml_fft_plan plan;
plan = kml_fft_plan_guru64_split_dft(rank, dims, howmany_rank, howmany_dims, ri, ii, ro, io, KML_FFT_ESTIMATE);
kml_fft_execute_split_dft(plan, ri, ii, ro, io);
kml_fft_destroy_plan(plan);
kml_fft_free(howmany_dims);
kml_fft_free(dims);
kml_fft_free(ri);
kml_fft_free(ii);
kml_fft_free(ro);
kml_fft_free(io);
/*
* ro = {1.200000e+02, 1.338564e+02, 1.061436e+02, 1.360000e+02,
* 1.120000e+02, 1.120000e+02, -8.000000e+01, 4.878461e+01,
* 7.215390e+00, 1.600000e+01, -2.692820e+01, -1.307180e+01}
*/
/*
* io = {4.800000e+01, -1.385641e+01, 1.385641e+01, -3.200000e+01,
* -8.000000e+00, -8.000000e+00, -8.000000e+00, 7.846097e-01,
* -4.078461e+01, 2.400000e+01, -2.264102e+01, 4.664102e+01}
*/
Fortran interface:
INTEGER(C_INT) :: RANK = 2
INTEGER(C_INT) :: HOWMANY_RANK = 1
TYPE(KML_FFT_IODIM64), POINTER :: DIMS(:), HOWMANY_DIMS(:)
REAL(C_DOUBLE), DIMENSION(12, 2) :: INIT
TYPE(C_DOUBLE), POINTER :: RI(:), II(:), RO(:), IO(:)
TYPE(C_PTR) :: PRI, PII, PRO, PIO, PDIMS, PHOWMANY_DIMS
INTEGER(C_SIZE_T) :: SIZE1, SIZE2, SIZE3
SIZE1 = 8 * 12
SIZE2 = 24 * RANK
SIZE3 = 24 * HOWMANY_RANK
PDIMS = KML_FFT_MALLOC(SIZE2)
PHOWMANY_DIMS = KML_FFT_MALLOC(SIZE3)
PRI = KML_FFT_MALLOC(SIZE1)
PII = KML_FFT_MALLOC(SIZE1)
PRO = KML_FFT_MALLOC(SIZE1)
PIO = KML_FFT_MALLOC(SIZE1)
CALL C_F_POINTER(PRI, RI, SHAPE=[12])
CALL C_F_POINTER(PII, II, SHAPE=[12])
CALL C_F_POINTER(PRO, RO, SHAPE=[12])
CALL C_F_POINTER(PIO, IO, SHAPE=[12])
CALL C_F_POINTER(PDIMS, DIMS, SHAPE=[RANK])
CALL C_F_POINTER(PHOWMANY_DIMS, HOWMANY_DIMS, SHAPE=[HOWMANY_RANK])
DIMS(0)%N = 2
DIMS(0)%IS = 3
DIMS(0)%OS = 3
DIMS(1)%N = 3
DIMS(1)%IS = 1
DIMS(1)%OS = 1
HOWMANY_DIMS(0)%N = 2
HOWMANY_DIMS(0)%IS = 2 * 3
HOWMANY_DIMS(0)%OS = 2 * 3
DATA INIT/120, 8, 0, 0, 0, -8, -8, -8, -16, 0, -40, -8, 0, 8, 0, 16, 16, 8, 0, 8, 0, -16, 8, -8/
INTEGER I
DO WHILE(I <= 12)
RI(I) = INIT(I, 0)
II(I) = INIT(I, 1)
END DO
TYPE(C_PTR) :: PLAN
PLAN = KML_FFT_PLAN_GURU64_SPLIT_DFT(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, RI, II, RO, IO, KML_FFT_ESTIMATE)
CALL KML_FFT_EXECUTE_SPLIT_DFT(PLAN, RI, II, RO, IO)
CALL KML_FFT_DESTROY_PLAN(PLAN)
CALL KML_FFT_FREE(PHOWMANY_DIMS)
CALL KML_FFT_FREE(PDIMS)
CALL KML_FFT_FREE(PRI)
CALL KML_FFT_FREE(PII)
CALL KML_FFT_FREE(PRO)
CALL KML_FFT_FREE(PIO)
!
! RO = /1.200000E+02, 1.338564E+02, 1.061436E+02, 1.360000E+02,
! 1.120000E+02, 1.120000E+02, -8.000000E+01, 4.878461E+01,
! 7.215390E+00, 1.600000E+01, -2.692820E+01, -1.307180E+01/
!
!
! IO = /4.800000E+01, -1.385641E+01, 1.385641E+01, -3.200000E+01,
! -8.000000E+00, -8.000000E+00, -8.000000E+00, 7.846097E-01,
! -4.078461E+01, 2.400000E+01, -2.264102E+01, 4.664102E+01/
!