kml_fft(f)_plan_guru_dft_r2c
建立多组数据序列n维R2C变换的plan。
其中,单个FFT的数据序列不需要是连续的,可以以跨步的形式提供。
接口定义
C interface:
kml_fft_plan kml_fft_plan_guru_dft_r2c(int rank, const kml_fft_iodim *dims, int howmany_rank, const kml_fft_iodim *howmany_dims,
double *in, kml_fft_complex *out, unsigned flags);
kml_fftf_plan kml_fftf_plan_guru_dft_r2c(int rank, const kml_fftf_iodim *dims, int howmany_rank, const kml_fftf_iodim *howmany_dims, float *in, kml_fftf_complex *out, unsigned flags);
Fortran interface:
RES = KML_FFT_PLAN_GURU_DFT_R2C(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, IN, OUT, FLAGS);
RES = KML_FFTF_PLAN_GURU_DFT_R2C(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, IN, OUT, FLAGS);
返回值
函数返回一个kml_fft(f)_plan类型的结构体指针。将该对象作为参数传入kml_fft(f)_execute函数中使用,将对当前提供的输入in和输出out执行FFT变换;另外,也可以通过将该对象作为参数传入kml_fft(f)_execute_dft_r2c函数中以对新的输入in和输出out执行FFT变换。
如果函数返回非空指针,则表示plan执行成功,否则表示执行失败。
参数
参数名 |
数据类型 |
描述 |
输入/输出 |
---|---|---|---|
rank |
int |
单个FFT序列的维度 约束:1 ≤ rank ≤ 3 |
输入 |
dims |
|
dims是大小为rank的结构体数组,dims[i]包含以下成员:
约束:dims[i].n ≥ 1, for i in 0 to rank - 1。 |
输入 |
howmany_rank |
int |
多个rank维FFT之间的内存排布用howmany_rank维的howmany_dims数组来描述,howmany_rank表示每个要计算的rank维FFT变换的起始地址的内存访问模式所需的维数。 约束:0 ≤ howmany_rank ≤ 3。 |
输入 |
howmany_dims |
|
howmany_dims是大小为howmany_rank的结构体数组,howmany_dims[i]包含以下成员:
|
输入 |
in |
|
输入待变换的数据。 |
输入 |
out |
|
输出快速傅里叶变换后的数据。 |
输出 |
flags |
unsigned int |
planning选项,未使用。 |
输入 |
依赖
C: "kfft.h"
Fortran: "kfft.f03"
示例
C interface:
int rank = 2; kml_fft_iodim *dims; dims = (kml_fft_iodim*)kml_fft_malloc(sizeof(kml_fft_iodim) * rank); dims[0].n = 2; dims[0].is = 3; dims[0].os = 2; dims[1].n = 3; dims[1].is = 1; dims[1].os = 1; int howmany_rank = 1; kml_fft_iodim *howmany_dims; howmany_dims = (kml_fft_iodim*)kml_fft_malloc(sizeof(kml_fft_iodim) * howmany_rank); howmany_dims[0].n = 2; howmany_dims[0].is = 2 * 3; howmany_dims[0].os = 2 * 2; double init[12] = {120, 8, 0, 0, 0, -8, -8, -8, -16, 0, -40, -8}; double *in; in = (double*)kml_fft_malloc(sizeof(double) * 12); for (int i = 0; i < 12; i++) { in[i] = init[i]; } kml_fft_complex *out; out = (kml_fft_complex*)kml_fft_malloc(sizeof(kml_fft_complex) * 8); kml_fft_plan plan; plan = kml_fft_plan_guru_dft_r2c(rank, dims, howmany_rank, howmany_dims, in, out, KML_FFT_ESTIMATE); kml_fft_execute_dft_r2c(plan, in, out); kml_fft_destroy_plan(plan); kml_fft_free(howmany_dims); kml_fft_free(dims); kml_fft_free(in); kml_fft_free(out); /* * out = {{1.200000e+02, 0.000000e+00}, {1.200000e+02, -1.385641e+01}, * {1.360000e+02, 0.000000e+00}, {1.120000e+02, 0.000000e+00}, * {-8.000000e+01, 0.000000e+00}, {2.800000e+01, 2.078461e+01}, * {1.600000e+01, 0.000000e+00}, {-2.000000e+01, -3.464102e+01}} */
Fortran interface:
INTEGER(C_INT) :: RANK = 2 INTEGER(C_INT) :: HOWMANY_RANK = 1 TYPE(KML_FFT_IODIM), POINTER :: DIMS(:), HOWMANY_DIMS(:) REAL(C_DOUBLE), DIMENSION(12) :: INIT TYPE(C_DOUBLE), POINTER :: IN(:) TYPE(KML_FFT_COMPLEX), POINTER :: OUT(:) TYPE(C_PTR) :: PIN, POUT, PDIMS, PHOWMANY_DIMS INTEGER(C_SIZE_T) :: SIZE1, SIZE2, SIZE3, SIZE4 SIZE1 = 8 * 12 SIZE2 = 16 * 8 SIZE3 = 12 * RANK SIZE4 = 12 * HOWMANY_RANK PDIMS = KML_FFT_MALLOC(SIZE3) PHOWMANY_DIMS = KML_FFT_MALLOC(SIZE4) PIN = KML_FFT_MALLOC(SIZE1) POUT = KML_FFT_MALLOC(SIZE2) CALL C_F_POINTER(PIN, IN, SHAPE=[12]) CALL C_F_POINTER(POUT, OUT, SHAPE=[8]) CALL C_F_POINTER(PDIMS, DIMS, SHAPE=[RANK]) CALL C_F_POINTER(PHOWMANY_DIMS, HOWMANY_DIMS, SHAPE=[HOWMANY_RANK]) DIMS(0)%N = 2 DIMS(0)%IS = 3 DIMS(0)%OS = 2 DIMS(1)%N = 3 DIMS(1)%IS = 1 DIMS(1)%OS = 1 HOWMANY_DIMS(0)%N = 2 HOWMANY_DIMS(0)%IS = 2 * 3 HOWMANY_DIMS(0)%OS = 2 * 3 DATA INIT/120, 8, 0, 0, 0, -8, -8, -8, -16, 0, -40, -8/ INTEGER :: I DO WHILE(I <= 12) IN(I) = INIT(I) END DO TYPE(C_PTR) :: PLAN PLAN = KML_FFT_PLAN_GURU_DFT_R2C(RANK, DIMS, HOWMANY_RANK, HOWMANY_DIMS, IN, OUT, KML_FFT_ESTIMATE) CALL KML_FFT_EXECUTE_DFT_R2C(PLAN, IN, OUT) CALL KML_FFT_DESTROY_PLAN(PLAN) CALL KML_FFT_FREE(PHOWMANY_DIMS) CALL KML_FFT_FREE(PDIMS) CALL KML_FFT_FREE(PIN) CALL KML_FFT_FREE(POUT) ! ! OUT = /1.200000E+02, 0.000000E+00, 1.200000E+02, -1.385641E+01, ! 1.360000E+02, 0.000000E+00, 1.120000E+02, 0.000000E+00, ! -8.000000E+01, 0.000000E+00, 2.800000E+01, 2.078461E+01, ! 1.600000E+01, 0.000000E+00, -2.000000E+01, -3.464102E+01/ !