conj
计算复数的共轭。
接口定义
C interface:
float complex conjf(float complex x);
double complex conj(double complex x);
long double complex conjl(long double complex x);
参数
参数名 |
类型 |
描述 |
输入/输出 |
---|---|---|---|
x |
|
表示输入数据的浮点值。 |
输入 |
返回值
- 返回x的共轭复数y,y.real ∈ (-INF, +INF),y.imag∈ (-INF, +INF)。
- 输入x,返回y.real=x.real, y.imag=-x.imag。
依赖
C: "kc.h"
示例
C interface:
// typical usage double x1 = INFINITY, y1 = INFINITY; double x2 = 2.0, y2 = 3.0; double x3 = -2.5, y3 = -3.4; double x4 = NAN, y4 = NAN; double x5 = 0, y5 = 0; double complex z1 = conj(__builtin_complex(x1, y1)); double complex z2 = conj(__builtin_complex(x2, y2)); double complex z3 = conj(__builtin_complex(x3, y3)); double complex z4 = conj(__builtin_complex(x4, y4)); double complex z5 = conj(__builtin_complex(x5, y5)); // print result printf("/*\n"); printf(" * conj(%.2f + %.2f*I) = %.6f + %.6f*I\n", x1, y1, __real__(z1), __imag__(z1)); printf(" * conj(%.2f + %.2f*I) = %.6f + %.6f*I\n", x2, y2, __real__(z2), __imag__(z2)); printf(" * conj(%.2f + %.2f*I) = %.6f + %.6f*I\n", x3, y3, __real__(z3), __imag__(z3)); printf(" * conj(%.2f + %.2f*I) = %.6f + %.6f*I\n", x4, y4, __real__(z4), __imag__(z4)); printf(" * conj(%.2f + %.2f*I) = %.6f + %.6f*I\n", x5, y5, __real__(z5), __imag__(z5)); printf(" **/\n"); /* * conj(inf + inf*I) = inf + -inf*I * conj(2.00 + 3.00*I) = 2.000000 + -3.000000*I * conj(-2.50 + -3.40*I) = -2.500000 + 3.400000*I * conj(nan + nan*I) = nan + -nan*I * conj(0.00 + 0.00*I) = 0.000000 + -0.000000*I **/
父主题: 复数函数