?(or,un)gql
生成具有正交列的实/复矩阵Q,且该矩阵定义为K个M阶基本反射器的乘积的前N列,即:Q=H(k)...H(2)H(1),其中H为?geqlf返回的。
接口定义
C Interface:
void sorgql_(const int *m, const int *n, const int *k, float *a, const int *lda, float *tau, float *work, const int *lwork, int *info);
void dorgql_(const int *m, const int *n, const int *k, double *a, const int *lda, double *tau, double *work, const int *lwork, int *info);
void cungql_(const int *m, const int *n, const int *k, float _Complex *a, const int *lda, float _Complex *tau, float _Complex *work, const int *lwork, int *info);
void zungql_(const int *m, const int *n, const int *k, double _Complex *a, const int *lda, double _Complex *tau, double _Complex *work, const int *lwork, int *info);
Fortran Interface:
SORGQL(M,N,K,A,LDA,TAU,WORK,LWORK,INFO);
DORGQL(M,N,K,A,LDA,TAU,WORK,LWORK,INFO);
CUNGQL(M,N,K,A,LDA,TAU,WORK,LWORK,INFO);
ZUNGQL(M,N,K,A,LDA,TAU,WORK,LWORK,INFO);
参数
| 参数名 | 类型 | 描述 | 输入/输出 | 
|---|---|---|---|
| m | 整数型 | Q的行数,m ≥ 0。 | 输入 | 
| n | 整数型 | Q的列数,m ≥ n ≥ 0。 | 输入 | 
| k | 整数型 | 构成矩阵Q的基本反射器的数量,n ≥ k ≥ 0。 | 输入 | 
| a | 
 | 维度(lda, n)。 
 | 输入、输出 | 
| lda | 整数型 | 矩阵A的主维, lda ≥ max(1,M)。 | 输入 | 
| tau | 
 | tau(i)必须包含基本反射器H(i)的常量因子,其由?geqlf返回。 | 输入 | 
| work | 
 | 维数(max(1,lwork))。 若info=0,work(1)返回最优lwork值。 | 输出 | 
| lwork | 整数型 | 数组work的维数。 lwork ≥ max(1, N),对于最优性能:lwork ≥ N*NB,其中NB为最优块大小如果lwork=-1,则该例程只计算work数组的最优大小,并以work数组的第一个值返回。 | 输入 | 
| info | 整数型 | 
 | 输出 | 
依赖
#include "klapack.h"
示例
C Interface:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | int m = 4; int n = 4; int k = 4; int lda = m; int info = 0; double tau[4] = {1.003949, 1.125229, 1.978923, 0.000000}; double *work = NULL; double qwork; int lwork = -1; /* * tau: * 1.003949 1.125229 1.978923 0.000000 * A (4x4, stored in column-major): * -1.036040 -0.892502 -0.120115 -0.425611 * 0.654120 0.468127 0.644302 -0.601906 * -0.135860 0.502159 1.077637 -0.103204 * -0.480109 -1.207226 0.162668 0.227483 * */ double a[] = {-1.036040, 0.654120, 0.135860, -0.480109, -0.892502, 0.468127, 0.502159, -1.207226, -0.120115, 0.644302, 1.077637, 0.162668, -0.425611, -0.601906, -0.103204, 0.227483}; /* Query optimal work size */ dorgql_(&m, &n, &k, a, &lda, tau, &qwork, &lwork, &info); if (info != 0) { return ERROR; } lwork = (int)qwork; work = (double *)malloc(sizeof(double) * lwork); /* Calculate Q */ dorgql_(&m, &n, &k, a, &lda, tau, work, &lwork, &info); free(work); /* * Output: * A output (stored in column-major) * -0.001005 -0.000771 0.004959 0.000000 * 0.956417 0.131450 0.398383 0.000000 * 0.237698 -1.275024 -0.978923 0.000000 * -0.000000 -0.000000 -0.000000 1.000000 */ | 
Fortran Interface:
        PARAMETER (m = 4) 
        PARAMETER (n = 4) 
        PARAMETER (k = 4) 
        PARAMETER (lda = 4) 
        INTEGER :: info = 0 
        REAL(8) :: tau(4) 
        REAL(8) :: qwork(1) 
        INTEGER :: lwork = -1 
        REAL(8), ALLOCATABLE :: work(:) 
* 
*       tau: 
*         1.003949  1.125229  1.978923  0.000000 
*       A (4x4, stored in column-major): 
*         -1.036040  -0.892502   -0.120115  -0.425611 
*         0.654120   0.468127    0.644302   -0.601906 
*         -0.135860  0.502159    1.077637   -0.103204 
*         -0.480109  -1.207226   0.162668   0.227483
 
*
        DATA tau /1.003949, 1.125229, 1.978923, 0.000000/ 
        REAL(8) :: a(m, n) 
        DATA a / -1.036040, 0.654120,  0.135860, -0.480109, 
     $           -0.892502, 0.468127,  0.502159, -1.207226, 
     $           -0.120115, 0.644302,  1.077637,  0.162668, 
     $           -0.425611, -0.601906, -0.103204, 0.227483 / 
   
        EXTERNAL DORGLQ 
*       Query optimal work size 
        CALL DORGQL(m, n, k, a, lda, tau, qwork, lwork, info) 
        IF (info.NE.0) THEN 
            CALL EXIT(1) 
        END IF 
        lwork = INT(qwork(1)) 
        ALLOCATE(work(lwork)) 
*       Calculate Q 
        CALL DORGQL(m, n, k, a, lda, tau, work, lwork, info) 
        DEALLOCATE(work) 
 * 
 * Output: 
 * A output (stored in column-major) 
 *   -0.001005       -0.000771       0.004959        0.000000 
 *   0.956417        0.131450        0.398383        0.000000 
 *   0.237698        -1.275024       -0.978923       0.000000 
 *   -0.000000       -0.000000       -0.000000       1.000000